123_507 Merkle-Tree ECDSA

1. Rates of cryplowurenes ; biteom , clhtrec i, Moneso.

Biomghric el hoA- /e it
- W W»M;h ot /ﬁf W%Lﬁf/jﬁ Wéﬂ%/wf LZ?
j Lt P cation.

3, DRH - %WM mgﬁs WM%WM§%/ZZM’,
4. Trontor tracing w DR M.
5. Marler, DRH sgstena.
6. Blocctioin declinology and smard cordlimcls,
7. Smard” conliadz gy lication o ([LTopic i gocial =ity |
L %%%waw% worle, 2. Z@ :Mfwuﬁdsw/ﬂé ,
i~ e

Thdurstrial ngp/%%/ pm} ”_\\ 3. Tepie ;i éﬂft%&é

. e
j 9/ @Zaé/é&&ﬂwh — §W/‘M ww/‘%fﬁ%

H-Functions

i /
Input Digest One - WWETM % H »%Wﬂ[mu
SypLogrEphic DFCD 3454 BBEA 788A 751A
Fox s fu}r‘\zts:ir:)n 696C 24D9 7009 CA99 2p17 _;(ff-f = % fg M ﬁ(uf)
The red fox cryptographic 0086 46 WM Vi ‘/5 %W%é
jumps.oGar X 2 : BB FBTD CBE2 823C
the blue dog function AT 6Dt 90DL RRCE SAer I/W//g{ébgé #/ (w) h
L’:mf C"ypth?;:phic 8FD8 7558 7851 4F32 DIC6 2. is LM/%/M%Z» 70 t%ﬂ//td
the blue dog . b7 > 7681 799 ODA4 AEFE 4819 , ‘
- ng W wheu hois Fiven
s cryptographic FCD3 7FDB 5AF2 C6FF 915F
= =) L > L
{::‘:::;;g furr‘:::) . D401 COA9 7D9A 46AF FBAS5 S M H (74)/- h,
The red fox cryptographic
; 8ACA D682 D588 4C75 4BF4
#’:ﬁ:’:& o » fu:"c:i’:) s > 1799 7D88 BCFS 9289 6A6C

Sk@ 256 (i @yfﬂ(/z) — 28 W%jWM/Z/g p%ﬂaa A
Js %ﬂ&w;&zw/ H ~ et tog /o/}wwc/ Lug V. ﬁﬁ/ fandon iy zis

123_507 Merkle-Tree ECDSA Page 1

>> sha256('Aliceaddr,Bobaddr,1BTC,nonce=1600027')
ans =
192D34BBF64C7D57291750207C8929E6295116600E653A57CE623EAA709DEGS7

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1600027")
h = 09DE657

Merkle_Tree

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone

13.4.1 Authentication trees

Authentication trees provide a method for making public data available with verifiable au-
thenticity, by using a tree structure in conjunction with a suitable hash function. and authen-
ticating the root value. Applications include:

1. authentication of public keys (as an alternative to public-key certificates). An authen-

tication tree created by a trusted third party. containing users’ public keys. allows au-

thentication of a large number of such keys.

trusted timestamping service. Creation of an authentication tree by a trusted third

party. in a similar way, facilitates a trusted timestamping service (see §13.8.1).

3. authentication of user validation parameters. Creation of a tree by a single user al-
lows that user to publish. with verifiable authenticity, a large number of its own public
validation parameters, such as required in one-time signature schemes (see §11.6.3).

[S]

To facilitate discussion of authentication trees, binary trees are first introduced.

Binary trees
A binary tree 1s a structure consisting of vertices and directed edges. The vertices are di-
vided into three types:

1. aroot vertex. The root has two edges directed towards 1t, a left and a right edge.

2. internal vertices. Each internal vertex has three edges incident to it — an upper edge
directed away from it, and left and right edges directed towards it.

. leaves. Each leaf vertex has one edge incident to it, and directed away from it.

(8]

The vertices incident with the left and right edges of an internal vertex (or the root) are called
the children of the internal vertex. The internal (or root) vertex is called the parent of the
associated children. Figure 13.5 illustrates a binary tree with 7 vertices and 6 edges.

Root

. Left Edge Right Edge
F et il vernTvedd

Figure 13.5: A binarv tree (with 4 shaded leaves and 3 internal vertices).

123_507 Merkle-Tree ECDSA Page 2

Mﬂ/é%%_ﬁ 1
N 4

2
Sﬁqnw«%: 2 Z.32=2

Constructing and using authentication trees

Consider a binary tree 7" which has ¢ leaves. Let / be a collision-resistant hash function. T'

can be used to authenticate ¢ public values, Y7, Y, ..., Y;. by constructing an authentica-

tion tree T™ as follows.)
1. Label each of the t leaves by a unique public value Y;. —= 7rzzzc4a 0‘/ 17

On the edge directed away from the leaf labeled Y;. put the label A(Y;)= b,

If'the left and right edge of an internal vertex are labeled h; and hs. respectively. label

the upper edge of the vertex h(hy | ha). I~ wmm

4. Ifthe edges directed toward the root vertex are labeled u; and us. label the root vertex W‘ﬁw
h(uq |u2).

Eu _h.)

Once the public values are assigned to leaves of the binary tree. such a labeling is well- h«’ 1248

defined. Figure 13.6 illustrates an authentication tree with 4 leaves. Assuming some means |, = BC 7

to authenticate the label on the root vertex, an authentication tree provides a means to au-

thenticate any of the ¢ public leaf values Y;. as follows. For each public value Y. there is “i [\ l’72 =
a unique path (the authentication path) from Y; to the root. Each edge on the path is a left

or right edge of an infernal vertex or the root. If e is such an edge directed towards vertex — 4274;35‘?
x. record the label on the other edge (not e) directed toward x. This sequence of labels (the

authentication path values) used in the correct order provides the authentication of Y;. as il-

ustrated by Example 13.17. Note that if a single leaf value (e.g.. Y7) is altered. maliciously

or otherwise. then authentication of that value will fail.

123_507 Merkle-Tree ECDSA Page 3

(R)= h(hz2||h(Ys))

ha :@(hlgm(}fs}r)yw&;) /(Rx?\

Figure 13.6: An authentication tree.

13.17 Example (key verification using authentication trees) Refer to Figure 13.6. The public

13.18

value Y; can be authenticated by providing the sequence of labels h(Y3). h(Y3), h(Yy). The
authentication proceeds as follows: compute h(Y7): next compute hy = h(h(Y1))| h(Y2)):
then compute ho = h(hi||h(Y3)): finally, accept Y; as authentic if h(hs| k(Y1) = R.
where the root value R is known to be authentic. O

The advantage of authentication trees is evident by considering the storage required to
allow authentication of £ public values using the following (very simple) alternate approach:
an entity A authenticates ¢t public values Y3, Y5, ..., Y; by registering each with a trusted
third party. This approach requires registration of ¢ public values, which may raise storage
issues at the third party when ¢ is large. In contrast. an authentication tree requires only a
single value be registered with the third party.

If a public key Y; of an entity A is the value corresponding to a leaf in an authentication
tree, and A wishes fo provide B with information allowing B to verify the authenticity of
Y. then A must (store and) provide to B both Y; and all hash values associated with the
authentication path from Y; to the root; in addition, B must have prior knowledge and trust
in the authenticity of the root value R. These values collectively guarantee authenticity.
analogous to the signature on a public-key certificate. The number of values each party must
store (and provide to others to allow verification of its public key)is lg(¢). as per Fact 13.19.

Fact (depth of a binary tree) Consider the length of (or number of edges in) the path from
each leaf'to the root in a binary tree. The length of the longest such path is minimized when
the tree is balanced. i.e., when the tree is constructed such that all such paths differ in length
by at most one. The length of the path from a leaf to the root in a balanced binary tree
containing ¢ leaves is about lg(t).

F Cevel 4 = 2 T
2 = 4
3 =4
I;)""m
3>

123_507 Merkle-Tree ECDSA Page 4

5{4 :rl

3

13.19 Fact (length of authentication paths) Using a balanced binary tree (Fact 13.18) as an au-
thentication tree with ¢ public values as leaves, authenticating a public value therein may
be achieved by hashing lg(¢) values along the path to the root.

13.20 Remark (time-space tradeoff) Authentication trees require only a single value (the root
value) in a tree be registered as authentic, but verification of the authenticity of any particu-
lar leaf value requires access to and hashing of all values along the authentication path from
leaf to root.

13.21 Remark (changing leaf values) To change a public (leaf) value or add more values to an
authentication tree requires recomputation of the label on the root vertex. For large balanced

trees, this may involve a substantial computation. In all cases. re-establishing trust of all
users in this new root value (i.e.. its authenticity) is necessary.

The computational cost involved m adding more values to a tree (Remark 13.21) may
motivate constructing the new tree as an unbalanced tree with the new leaf value (or a sub-
tree of such values) being the right child of the root, and the old tree, the left. Another
motivation for allowing unbalanced trees arises when some leaf values are referenced far
more frequently than others.

Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on

the algebraic structureof elliptic curves over finite fields.

ECC requires smaller keys compared to non-ECC cryptography (based on plain Galois fields)
to provide equivalent security.[2l

Elliptic curves are applicable for key agreement, digital signatures, pseudo-random
generators and other tasks. Indirectly, they can be used for encryption by combining the
key agreement with a symmetric encryption scheme.

They are also used in several integer factorization algorithms based on elliptic curves that
have applications in cryptography, such as Lenstra elliptic-curve factorization.

Public-key cryptography is based on the intractability of certain mathematical problems.
Early public-key systems are secure assuming that it is difficult to factor a large integer
composed of two or more large prime factors.

For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a
random elliptic curve element with respect to a publicly known base point is infeasible: this
is the "elliptic curve discrete logarithm problem" (ECDLP).

The security of elliptic curve cryptography depends on the ability to compute a point
multiplication and the inability to compute the multiplicand given the original and product
points.

The size of the elliptic curve determines the difficulty of the problem.

The primary benefit promised by elliptic curve cryptography is a smaller key size,
reducing storage and transmission requirements, i.e. that an elliptic curve group could
provide the same level of security afforded by an RSA-based system with a large modulus
and correspondingly larger key: for example, a 256-bit elliptic curve public key should
provide comparable security to a 3072-bit RSA public key.

The U.S. National Institute of Standards and Technology (NIST) has endorsed elliptic
curve cryptography in its Suite B set of recommended algorithms, specifically elliptic

123_507 Merkle-Tree ECDSA Page 5

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Galois_field
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-nsaQCfaq-1
https://en.wikipedia.org/wiki/Key_agreement
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/CPRNG
https://en.wikipedia.org/wiki/CPRNG
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization
https://en.wikipedia.org/wiki/Intractability_(complexity)#Intractability
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Level_of_security
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

curve Diffie—Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature
Algorithm (ECDSA) for digital signature.

The U.S. National Security Agency (NSA) allows their use for protecting information
classified up to top secret with 384-bit keys.[2l

However, in August 2015, the NSA announced that it plans to replace Suite B with a new
cipher suite due to concerns about guantum computing attacks on ECC.E!

i - metsage to be gigneel of prdittary Jomite Conglh.

H() - é/’//yfﬁfl%ﬁMﬂ secipe H - oot

Hasty ond $19 1 patadlianm : 47%@2%/&@, ve formed on Hhe
h—vatue @ h = H{m)

I vl il sclreiric usco M%}&ZMZ/W
ppra tier wiodnly p, whete pols priwaz busbor
v o cal sets of éw/fgf/fg/ ¢ OZ;*;O{{I 2)3, -, /7—1}
ECDSA s wsing a oy Specinl addiTion gfiia 7ot
Getween 1he /WZM/L@ Lo &Zét;hf/é cerr e dz%ﬂmﬂg s,

dlic prramdters of Eccs @ (Typedf 72, &)

B
ek o f=yé
sig(hhic, h)=e lmys) oufiwtion :
4 H(m)=h
- \/g,«(PMMA,h):ggZ

Bitcoin transactions are permanently recorded in the network through files called blocks. Maximum size

123_507 Merkle-Tree ECDSA Page 6

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-2
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-nsaquantum-3

of the block is currently limited to 1 MB but it may be increased in the future. Each block contains a
UNIX time timestamp, which is used in block validity checks to make it more difficult for adversary to
manipulate the block chain. New blocks are added to the end of the record (block chain) by referencing
the hash of the previous block and once added are never changed. A variable number of transactions is
included into a block through the merkle tree (fig 3.). Transactions in the Merkle tree are hashed using
double SHA256 (hash of the hash of the transaction message).

:T[:-p hash Root hash = Rh : §L7M U/E(CPFK 3 P//lk)
'Hash'/’ '\Hash' §j<)9rk; Qh) - s
SN SN
Hash Hash Hash Hash
0-0 | 0-1 | 1-0 | 1-1
S S S
Data Data | | Data Data

block| |block| |block| |block
1 2 | 3 4

T1 T2 T3 Th

Transactions are included into the block’s hash indirectly through the merkle root (top hash of a
merkle tree). This allows removing old transactions (fig. 4) without modifying the hash of the
block. Once the latest transaction is buried under enough blocks, previous transactions serve only
as a history of the ownership and can be discarded to save space.

>> h=h28('Aliceaddr, Bobaddr, 1BTC, nonce=1000000')
h =08625A0

>> h28('123456')

ans = ADC6C92

>> h=h28('AIiceaddr,Bobaddr,lBTC,nonce=-')
h = F5F7583

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000001")
h = 6A152F0

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000002')
h = 65F8AA1

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000003')
h = 5F938C5

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000004")
h=31E2102

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000005")
h = 8215835

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000006")
h =2BF8D14

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000007')
h = 5DCDEF8

>> h=h28('Aliceaddr,Bobaddr,1BTC,nonce=1000008')
h=4E7F384

123_507 Merkle-Tree ECDSA Page 7

>> h=h28('Aliceaddr, Bobaddr, 1BTC,nonce=1000027")
h =044785C

v

N UIO €
0lam — v ”WV

123_507 Merkle-Tree ECDSA Page 8

